منابع مشابه
Unsupervised Image Steganalysis Method Using Self-Learning Ensemble Discriminant Clustering
Image steganography is a technique of embedding secret message into a digital image to securely send the information. In contrast, steganalysis focuses on detecting the presence of secret messages hidden by steganography. The modern approach in steganalysis is based on supervised learning where the training set must include the steganographic and natural image features. But if a new method of s...
متن کاملA new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملSpectral Clustering Ensemble and Unsupervised Clustering for Land cover Identification in High Spatial Resolution Satellite Images
Unsupervised clustering plays a dominant role in detailed landcover identification specifically in agricultural and environmental monitoring of high spatial resolution remote sensing images. A method called Approximate Spectral Clustering enables spectral partitioning for big datasets to extract clusters with different characteristic without a parametric model. Various information types are use...
متن کاملUnsupervised Ensemble Regression
Consider a regression problem where there is no labeled data and the only observations are the predictions fi(xj) of m experts fi over many samples xj . With no knowledge on the accuracy of the experts, is it still possible to accurately estimate the unknown responses yj? Can one still detect the least or most accurate experts? In this work we propose a framework to study these questions, based...
متن کاملWeighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2013
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-013-5394-z